

WMO/WWRP 4th International Symposium on Nowcasting and Very-short-range Forecast (WSN16)

Genesis of tropical cyclone Madi (2013): Appraisal of recent understanding

VPM Rajasree¹, Amit P Kesarkar¹, Jyoti N Bhate¹, U Umakanth¹, Vikas Singh¹ and T. Harish Varma¹

A presentation by
Ms. Rajasree VPM

Weather and Climate Research Group

¹National Atmospheric Research Laboratory (NARL)

Department of space, India

email: rajasree.vpm@gmail.com

Scientific problem

"The pathway by which cumulus convection organizes to form a large scale tropical cyclone vortex is an unsolved problem in dynamic and tropical meteorology"

-Hendricks et al. (2004)

Dunkerton et al., 2009

- Marsupial paradigm (H1-H3)
 - H1- Roll up of vorticity/ wave breaking
 - H2- Pouch region
 - H3- Meso-scale vortices

Objectives:

- To test the applicability of marsupial paradigm over NIO
- Understand the pathway of genesis of Madi (2013)

Data and methodology

- IMD best track dataset
- NOAA/AOML TCHP images
- MSG satellite images
- ERA interim reanalysis
- * NCEP ADP upper air and surface observations
- Satellite Radiances

Satel	lita	Can	00	KO
Salti	IILE	3 EII	5 0	12

Satellite Platform

AMSU A

NOAA 15,16,18, EOS Aqua and METOP-2

AMSU B

NOAA-15, 16, 17

AIRS

NOAA-18, and METOP -2

MHS

EOS Aqua

High resolution analysis is created using 3Dvar assimilation

Experimental design

Details	Configuration		
Dynamical core	ARW, compressible, Non-hydrostatic		
Horizontal grid distance	18km(Domain 1), 6km (Domain 2)		
Vertical levels	64		
Model top	100 hPa		
Initial and boundary conditions	GFS analysis (0.5 x 0.5), 6 hourly		
Time step	30 s		
Microphysics	Thompson		
Long wave radiation	RRTM		
Short wave radiation	Dudhia scheme		
Surface layer	Monin Obukhov similarity theory		
Land surface	Noah Land surface		
PBL	Mellor Yemada Janjic		
Cumulus	Kain-Fritch scheme		

Simulation verification

Track

Wind speed

CSLP

IMD in green and 3Dvar analysis in red

- > Formed on Dec 6 and dissipated on Dec13
 - > Category 1 on Dec 8; 986 hPa and 65kt
- Unique track with near northerly movement

3Dvar analysis shows matching track and the recurvature of Madi cyclone also well simulated.

Large scale conditions

MSG satellite image

CAPE & CINE

04Dec2013, Warm water SST> 26.5°C, TCHP > 100KJcm⁻², CAPE > 2500 Jkg¹

Large scale conditions

Deep layer shear

850hPa vorticity

Favorable conditions for genesis

Genesis sequence of Madi (2013) - H1

Tracking parent disturbance

Tropical cyclone Madi's precursor disturbance originated from a westward moving disturbance and it is tracked for 15 days prior to TD declaration.

Phase speed of propagation is -7.2 ms⁻¹

Pouch formation – H2

850hPa vorticity

TPW

Pouch is identified as a region of enhanced moisture

Pouch formation – H2

OW parameter

Madi forms in a rotation dominant region

Intensification of convection – H3

Vertical velocity

Rain rate

Proto-vortex is intensified by convective activity (H3)

Pathway of genesis of Madi (2013)

Profiles

Hovmoller

Closely follows the bottom-up pathway

Pathway of genesis of Madi (2013)

Warm core

Closely follows the bottom-up pathway

Role of VHTs on genesis of Madi (2013)

Diabatic heating

Diabatic vortex mereger in the genesis environemnent

Role of VHTs on genesis of Madi (2013)

Vorticity budget

$$\frac{\partial \eta}{\partial t} = -\nabla . u \eta - \hat{k} . \nabla \times \omega \frac{\partial V}{\partial p} + \hat{k} . \nabla \times F$$

$$\eta = \xi + f$$

$$\omega = \frac{D_{I}}{D_{I}}$$

Role of VHTs on genesis of Madi (2013)

Diabatic heating

Vertical velocity

Diabatic heating rate is dominated by the latent heating in the convective updrafts

Conclusions

- * The paper presents the comprehensive analysis of the genesis sequence of a very severe cyclonic storm Madi over the BoB region to examine the applicability of recent concepts and theories of cyclogenesis.
- * For this purpose, we have generated high resolution analysis using meso-scale model WRF and available data sets viz. satellite data and insitu weather observations, using 3DVAR data assimilation technique.
- Additional data sets used include ERA-interim reanalysis, IRBT observations, MSG and TRMM 3B42 rainfall observations.
- The parent disturbance responsible for genesis of tropical cyclone Madi is tracked from fifteen days prior to the period of genesis in the developed high resolution analysis.
- The closed cyclonic circulation protects the Madi precursor from all kinds of deformations and acts as a "pouch region" associated with the parent disturbance.

Conclusions

- * Large scale priming of environment agrees with the hypotheses of the marsupial theory of tropical cyclogenesis.
- Our results indicate that, development of warm core inside the pouch region is continuous process about two days prior to actual time of cyclogenesis.
- The diabatic heating more than 10 K h⁻¹ and collocated increase in the vertical velocity more than 0.5 ms⁻¹ is evident in the genesis environment of Madi cyclone.
- * These convective vortices tilts and converges under the influence of the low level absolute vorticity to form the low level cyclonic circulation leading to the genesis of tropical cyclone Madi.
- Our investigation suggests that the bottom-up mechanism was operational for the genesis of tropical cyclone Madi.

Rajasree et al., 2016, JGR

Thank you...